Cataract Panel

SEQmethod-seq-icon Our Sequence Analysis is based on a proprietary targeted sequencing method OS-Seq™ and offers panels targeted for genes associated with certain phenotypes. A standard way to analyze NGS data for finding the genetic cause for Mendelian disorders. Results in 21 days. DEL/DUPmethod-dup-icon Targeted Del/Dup (CNV) analysis is used to detect bigger disease causing deletions or duplications from the disease-associated genes. Results in 21 days. PLUSmethod-plus-icon Plus Analysis combines Sequence + Del/Dup (CNV) Analysis providing increased diagnostic yield in certain clinical conditions, where the underlying genetic defect may be detectable by either of the analysis methods. Results in 21 days.

Test code: OP0201

The Blueprint Genetics Cataract Panel is a 54 gene test for genetic diagnostics of patients with clinical suspicion of cataract.

The panel covers genes associated with congenital cataract and syndromes in which cataract is accompanied with systemic disease.

About Cataract

Cataract is defined as opacification of the normally transparent crystalline lens. Cataract can be classified as congenital, infantile, juvenile, presenile and senile. Congenital cataract (CC) is present at birth or during early childhood and is one of the most common ocular diseases causing visual impairment or blindness in children worldwide. Nuclear cataract is the most common type of hereditary CC and is characterized by the opacification limited to the embryonic and/or fetal nuclei of the lens (PMID: 24384146). It can be inherited in an autosomal dominant, autosomal recessive or X-linked manner, of which autosomal dominant mode is the most common. Nuclear CC is genetically highly heterogenous. Mutations in lens crystallins (CRYAA, CRYAB, CRYBB1, CRYBB2, CRYBB3, CRYGC, CRYGD) explain approximately half of the cases, followed by connexins (GJA3, GJA8). Congenital nuclear cataract can be isolated (70% of cases) or accompanied with other ocular disorders, such as microphthalmia or aniridia. It may also be part of multisystem genetic disorders such as Nance–Horan syndrome (NHS), Lowe syndrome (OCRL) or neurofibromatosis type 2 (NF2). The prevalence of cataract in children has been estimated between 1-15:10,000.

Availability

Results in 3-4 weeks. We do not offer a maternal cell contamination (MCC) test at the moment. We offer prenatal testing only for cases where the maternal cell contamination studies (MCC) are done by a local genetic laboratory. Read more.

Genes in the Cataract Panel and their clinical significance
GeneAssociated phenotypesInheritanceClinVarHGMD
ABCB6Blood group, Langereis system, PseudohyperkalemiaAD/BG957
ADAMTSL4Ectopia lentis, isolatedAR720
AGK*Sengers syndromeAR1619
ALDH18A1Spastic paraplegia, Cutis laxaAD/AR1825
BCORMicrophthalmia, syndromic, Oculofaciocardiodental syndromeXL2244
BFSP2CataractAD/AR27
COL2A1Avascular necrosis of femoral head, Rhegmatogenous retinal detachment, Epiphyseal dysplasia, with myopia and deafness, Czech dysplasia, Achondrogenesis type 2, Platyspondylic dysplasia Torrance type, Hypochondrogenesis, Spondyloepiphyseal dysplasia congenital (SEDC), Spondyloepimetaphyseal dysplasia (SEMD) Strudwick type, Kniest dysplasia, Spondyloperipheral dysplasia, Mild SED with premature onset arthrosis, SED with metatarsal shortening, Stickler syndrome type 1AD106537
COL4A1Schizencephaly, Anterior segment dysgenesis with cerebral involvement, Retinal artery tortuosity, Porencephaly, Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps, Brain small vessel diseaseAD2788
COL11A1Marshall syndrome, Fibrochondrogenesis, Stickler syndrome type 2AD/AR1876
COL18A1Knobloch syndromeAR1329
CRYAACataractAD/AR1020
CRYABCataract, myofibrillar myopathy and cardiomyopathy, Congenital cataract and cardiomyopathy, Dilated cardiomyopathy (DCM), Myopathy, myofibrillarAD1425
CRYBB1CataractAD/AR313
CRYBB2*CataractAD622
CRYBB3CataractAR37
CRYGCCataractAD918
CRYGDCataractAD925
CYP27A1Cerebrotendinous xanthomatosisAR5599
ERCC2Xeroderma pigmentosum, Trichothiodystrophy, photosensitiveAR1890
ERCC5Xeroderma pigmentosum, Xeroderma pigmentosum/Cockayne syndromeAR1751
ERCC6Xeroderma Pigmentosum-Cockayne Syndrome, De Sanctis-Cacchione syndromeAD/AR3791
ERCC8UV-sensitive syndrome, Cockayne syndromeAR939
EYA1Otofaciocervical syndrome, Branchiootic syndrome, Branchiootorenal syndromeAD33186
FAM126ALeukodystrophy, hypomyelinatingAR612
FOXE3Aphakia, congenital primary, Anterior segment mesenchymal dysgenesisAR/AD321
FTLHyperferritinemia-cataract syndrome, L-ferritin deficiency, Neurodegeneration with brain iron accumulationAD/AR2061
FYCO1CataractAR613
FZD4Retinopathy of prematurity, Exudative vitreoretinopathyAD/Digenic985
GALK1Galactokinase deficiencyAR638
GALTGalactosemiaAR239319
GCNT2Blood group, Ii, Adult i pheno without cataract, Cataract 13 with adult i phenoBG/AR712
GJA1*Oculodentodigital dysplasia mild type, Oculodentodigital dysplasia severe type, Syndactyly type 3AD23103
GJA3CataractAD1238
GJA8CataractAD/AR1550
HSF4CataractAD416
LIM2CataractAR23
MAFAyme-Gripp syndromeAD1616
MYH9Sebastian syndrome, May-Hegglin anomaly, Epstein syndrome, Fechtner syndrome, Macrothrombocytopenia and progressive sensorineural deafnessAD19113
NDPExudative vitreoretinopathy, Norrie diseaseXL25155
NF2Schwannomatosis, NeurofibromatosisAD24423
NHSNance-Horan syndrome, CataractXL1943
OCRLLowe syndrome, Dent diseaseXL33251
OPA3Optic atrophy, 3-methylglutaconic aciduriaAD/AR712
PAX6Aniridia, cerebellar ataxia, and mental retardation (Gillespie syndrome), Keratitis, Coloboma, ocular, Cataract with late-onset corneal dystrophy, Morning glory disc anomaly, Foveal hypoplasia, Aniridia, Optic nerve hypoplasia, Peters anomalyAD49461
PITX3Cataract, Anterior segment mesenchymal dysgenesisAD312
RAB3GAP1Warburg micro syndromeAR1658
RECQL4Baller-Gerold syndrome, RAPADILINO syndrome, Rothmund-Thomson syndromeAR3492
SIL1Marinesco-Sjogren syndromeAR1449
SLC33A1*Congenital cataracts, hearing loss, and neurodegenerationAR67
TDRD7CataractAR13
TFAP2ABranchiooculofacial sydromeAD942
TMEM70Mitochondrial complex V (ATP synthase) deficiencyAR918
WFS1Wolfram syndromeAR59343
WRN*Werner syndromeAR2097
  • * Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more.

Gene, refers to HGNC approved gene symbol; Inheritance to inheritance patterns such as autosomal dominant (AD), autosomal recessive (AR) and X-linked (XL); ClinVar, refers to a number of variants in the gene classified as pathogenic or likely pathogenic in ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/); HGMD, refers to a number of variants with possible disease association in the gene listed in Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/). The list of associated (gene specific) phenotypes are generated from CDG (http://research.nhgri.nih.gov/CGD/) or Orphanet (http://www.orpha.net/) databases.

Blueprint Genetics offers a comprehensive cataract panel that covers classical genes associated with COFS syndrome, cataract, cataract-microcornea syndrome, early-onset non-syndromic cataract, hereditary hyperferritinemia with congenital cataracts, Marinesco-Sjogren syndrome, Nance-Horan syndrome and oculocerebrorenal syndrome. The genes are carefully selected based on the existing scientific evidence, our experience and most current mutation databases. Candidate genes are excluded from this first-line diagnostic test. The test does not recognise balanced translocations or complex inversions, and it may not detect low-level mosaicism. The test should not be used for analysis of sequence repeats or for diagnosis of disorders caused by mutations in the mitochondrial DNA.

Please see our latest validation report showing sensitivity and specificity for SNPs and indels, sequencing depth, % of the nucleotides reached at least 15x coverage etc. If the Panel is not present in the report, data will be published when the Panel becomes available for ordering. Analytical validation is a continuous process at Blueprint Genetics. Our mission is to improve the quality of the sequencing process and each modification is followed by our standardized validation process. All the Panels available for ordering have sensitivity and specificity higher than > 0.99 to detect single nucleotide polymorphisms and a high sensitivity for indels ranging 1-19 bp. The diagnostic yield varies substantially depending on the used assay, referring healthcare professional, hospital and country. Blueprint Genetics’ Plus Analysis (Seq+Del/Dup) maximizes the chance to find molecular genetic diagnosis for your patient although Sequence Analysis or Del/Dup Analysis may be cost-effective first line test if your patient’s phenotype is suggestive for a specific mutation profile. Detection limit for Del/Dup analysis varies through the genome from one to six exon Del/Dups depending on exon size, sequencing coverage and sequence content.

The sequencing data generated in our laboratory is analyzed with our proprietary data analysis and annotation pipeline, integrating state-of-the art algorithms and industry-standard software solutions. Incorporation of rigorous quality control steps throughout the workflow of the pipeline ensures the consistency, validity and accuracy of results. The highest relevance in the reported variants is achieved through elimination of false positive findings based on variability data for thousands of publicly available human reference sequences and validation against our in-house curated mutation database as well as the most current and relevant human mutation databases. Reference databases currently used are the 1000 Genomes Project (http://www.1000genomes.org), the NHLBI GO Exome Sequencing Project (ESP; http://evs.gs.washington.edu/EVS), the Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org), ClinVar database of genotype-phenotype associations (http://www.ncbi.nlm.nih.gov/clinvar) and the Human Gene Mutation Database (http://www.hgmd.cf.ac.uk). The consequence of variants in coding and splice regions are estimated using the following in silico variant prediction tools: SIFT (http://sift.jcvi.org), Polyphen (http://genetics.bwh.harvard.edu/pph2/), and Mutation Taster (http://www.mutationtaster.org).

Through our online ordering and statement reporting system, Nucleus, the customer can access specific details of the analysis of the patient. This includes coverage and quality specifications and other relevant information on the analysis. This represents our mission to build fully transparent diagnostics where the customer gains easy access to crucial details of the analysis process.

In addition to our cutting-edge patented sequencing technology and proprietary bioinformatics pipeline, we also provide the customers with the best-informed clinical report on the market. Clinical interpretation requires fundamental clinical and genetic understanding. At Blueprint Genetics our geneticists and clinicians, who together evaluate the results from the sequence analysis pipeline in the context of phenotype information provided in the requisition form, prepare the clinical statement. Our goal is to provide clinically meaningful statements that are understandable for all medical professionals, even without training in genetics.

Variants reported in the statement are always classified using the Blueprint Genetics Variant Classification Scheme modified from the ACMG guidelines (Richards et al. 2015), which has been developed by evaluating existing literature, databases and with thousands of clinical cases analyzed in our laboratory. Variant classification forms the corner stone of clinical interpretation and following patient management decisions. Our statement also includes allele frequencies in reference populations and in silico predictions. We also provide PubMed IDs to the articles or submission numbers to public databases that have been used in the interpretation of the detected variants. In our conclusion, we summarize all the existing information and provide our rationale for the classification of the variant.

A final component of the analysis is the Sanger confirmation of the variants classified as likely pathogenic or pathogenic. This does not only bring confidence to the results obtained by our NGS solution but establishes the mutation specific test for family members. Sanger sequencing is also used occasionally with other variants reported in the statement. In the case of variant of uncertain significance (VUS) we do not recommend risk stratification based on the genetic finding. Furthermore, in the case VUS we do not recommend use of genetic information in patient management or genetic counseling. For some cases Blueprint Genetics offers a special free of charge service to investigate the role of identified VUS.

We constantly follow genetic literature adapting new relevant information and findings to our diagnostics. Relevant novel discoveries can be rapidly translated and adopted into our diagnostics without delay. These processes ensure that our diagnostic panels and clinical statements remain the most up-to-date on the market.

Find more info in Support
Download PDF

Full service only

Choose an analysis method

$ $ 1700
$ $ 1000
$ $ 1900

Extra services

$ 500
Total $
Order now

ICD & CPT codes

CPT codes

SEQ81479
DEL/DUP81479


ICD codes

Commonly used ICD-10 codes when ordering the Cataract Panel

ICD-10Disease
Q12.0Cataract

Accepted sample types

  • EDTA blood, min. 1 ml
  • Purified DNA, min. 5μg
  • Saliva (Oragene DNA OG-500 kit)

Label the sample tube with your patient’s name, date of birth and the date of sample collection.

Note that we do not accept DNA samples isolated from formalin-fixed paraffin-embedded (FFPE) tissue.